gForce
Chilled Water
7 - 211 kW

Installation, Operation & Maintenance Manual
CONGRATULATIONS ON THE SELECTION OF A DATA AIRE PRECISION ENVIRONMENTAL CONTROL SYSTEM. PROPER INSTALLATION, OPERATION AND MAINTENANCE OF THIS EQUIPMENT WILL ENSURE YEARS OF OPTIMAL PERFORMANCE.

This manual is intended to assist trained service personnel by providing necessary guidelines for this particular equipment. Service to Data Aire units should be done by qualified individuals with an adequate background in areas such as HVAC, electrical, plumbing and electronics, as applicable.

Service performed by unauthorized or unqualified technicians may void manufacturers’ warranties and could result in property damage and/or personal injury.

Special care should be given to those area where these symbols appear.

Data Aire, Inc. reserves the right to make design changes for the purposes of product improvement, or to withdraw any design without notice.
1.0 INSTALLATION

1.1 Room Considerations

1.2 Inspection

1.3 Rigging

1.4 Locating the Unit

1.4.1 Downflow Units

1.4.2 Upflow Units

1.5 Paperwork

1.6 Storage

2.0 PIPING

2.1 Chilled Water Piping

2.1.1 Connection sizes, Chilled Water unit

2.2 Chilled Water Valve Ratings

2.2.1 3-Way Chilled Water Valves

2.2.2 2-Way Chilled Water Valves

2.3 Condensate Drain Piping

2.4 Humidifier Piping

2.4.1 Steam Generator Humidifier

2.4.2 Dry Steam Humidifier

2.5 Leak Testing

3.0 ELECTRICAL CONNECTIONS

3.1 Electrical Service

3.2 Nameplate Ratings

3.3 Grounding

3.4 Voltage Tolerance

3.5 Remote Shutdown

3.6 Remote Alarm Contacts

3.7 Remote Sensors

3.8 Condensate Pumps

3.9 Condensate Probe

3.10 Water Sensing Cable

4.0 CONTROLS

4.1 dap4 Microprocessor Control Panel

4.2 Wiring Diagrams

5.0 ELECTRONICALLY COMMUTATED MOTORS (EC MOTORS)

5.1 Start-up with EC motors/Plug fans

5.2 Testing

5.3 Protective Feature

5.4 Maintenance
Table of Contents, cont’d

6.0 REGULAR MAINTENANCE ITEMS ... 15
 6.1 Filters .. 15
 6.2 Humidifier Canisters .. 15
 6.3 Fuses ... 15
 6.4 Heating Elements .. 15

7.0 WARRANTY .. 16

8.0 CONTACT DATA AIRE .. 17

MONTHLY MAINTENANCE INSPECTION CHECKLIST 19
QUARTERLY MAINTENANCE INSPECTION CHECKLIST 20
INDEX .. 21
1.0 INSTALLATION

There is no intent on the part of Data Aire, Inc. to define local codes or statutes which may supercede common trade practices. The manufacturer assumes no responsibility for their interpretation. Consult local building codes and the National Electrical Code for special installation requirements.

1.1 Room Considerations
Precision air conditioning equipment is designed to control spaces within close tolerances of temperature and humidity. However, the room must be built with a proper vapor barrier. A film of polyethylene is often used on walls and ceilings. Walls and floors must also be painted with a vapor-seal paint. Failure to provide a vapor barrier can compromise space conditions.

Introduction of outside air into the space should be minimized. Outside air in excess of 5% of the total circulated air volume can have a significant effect on the overall space conditions and result in poor space control.

1.2 Inspection
This Data Aire unit has been factory run-tested and has gone through a comprehensive inspection prior to its packaging and shipment to ensure that it arrives in excellent condition. However, shipping damage can occur and a visual inspection of the outer crating immediately upon delivery should be performed.

Note any external damage or other transportation damage on the freight carrier’s forms. Inspect the unit itself for internal damage. A claim should be filed with the shipping company if the equipment is damaged or incomplete.

Loose items such as remote control panels, disconnect switch handles, spare belts and spare filters are packed inside the unit. Refer to the yellow shipping tag located on the unit door for details.

Freight damage claims are the responsibility of the purchaser. Action to recover losses should be filed immediately. Please notify factory personnel of any claims.

1.3 Rigging
Move the unit in its upright position to the installation site. It is recommended that the unit be protected from damage to the decorative doors during any storage or moving. Removal of the decorative doors is easily accomplished and may be done when moving equipment.

The shipping skid should be left in place if the unit is being moved with a forklift. If the unit is being lifted, use spreader bars to prevent damage to the doors and panels.

The unit has 3/4” holes in the shipping skid to which casters with 3/4” stems can be attached. This allows easy movement down halls, into elevators and through doorways. If clearance is a problem the casters may be inserted directly into the bottom of the 1” tubular steel corner posts at the bottom of the unit.
Warning: Improper lifting or moving of equipment may result in damage to decorative doors, panels or frame members.

1.4 Locating the Unit
When installing the unit, sufficient space must be allowed for airflow clearance, wiring, plumbing, and service access. It is recommended that each side and front have a clearance of at least 36" to allow the doors to swing open and for servicing the unit.

The doors on some sides may not require as much service clearance. Refer to the particular unit component breakdown drawings for assistance. Rear clearance is not required, but 1" to 2" of clearance is suggested.

For the best air distribution, the unit should be centered against the longest wall, as close to the heat load as possible, unless the unit is ducted. The unit should not be placed near any corner of the room or at the end of a long, narrow room. Multiple units should be evenly spaced, as far apart as possible.

Note to Installing Contractor: Condensation formation and frequent humidifier flushing are normal functions of this equipment. Proper drain connections must be made to ensure proper removal. Unit will require water connections for condensate removal and possibly for humidifier makeup water, chilled water and/or hot water. Installation of units above equipment that could sustain water damage should be avoided.

1.4.1 Downflow Units
Downflow units will typically sit on an elevated flooring system known as a raised floor. The unit discharges air downward which pressurizes the raised floor and channels upward through perforated floor tiles. Location and quantity of perforated tiles will dictate proper air distribution. If the raised floor is strong enough to support the unit and local codes permit, the unit can be placed directly on top with cutouts made for the discharge openings.

There may be additional support required in the form of adjustable jackstands. These are adjustable, threaded leveling rods which support the unit in each of the corners and in the center on longer length units. Tighten the locknuts provided with each jackstand. The baseplate can rest on the floor or on vibration isolation pads.

Floorstands are also a way of supporting the unit. These are ordered to the height of the floor with leveling rods to allow adjustment. The floorstand has lips in each corner to align with the unit which is placed on top. It is recommended that the unit frame be bolted or screwed to the floorstand from below. Local building codes may dictate this procedure. After installation, the raised floor is typically built around the unit.

The raised floor serves as the distribution plenum for air on downflow units. Cables, piping, wiring raceways, inadequate floor height and any other restrictions can inhibit proper airflow. Care should be taken to avoid restrictions.
1.4.2 Upflow Units
Upflow units will typically be supported by vibration isolation pads and/or floorstands which and may also include leveling screws. An air discharge plenum may be factory provided which ships loose and must be attached at the top of the unit frame.

Alternately, an air distribution plenum must be field fabricated with supply grilles to distribute the air. Units are shipped with a drive package to overcome external static pressure. Adjustments to the blower speed may be required to adjust to actual conditions.

1.5 Paperwork

Each Data Aire unit ships with a start-up sheet that should be completed during installation. Also included in the paperwork is a warranty/information packet that provides important wiring diagrams, specific component literature, warranty registrations cards and other valuable paperwork, including a copy of this Installation/Operation and Maintenance manual.

A yellow tag is attached to the outside decorative door to indicate articles that may have been packaged and shipped loose within the unit cabinet. Typically this would be jackstands, condensate pumps and other loose components that are not factory mounted.

1.6 Storage

Your Data Aire equipment comes ready for immediate installation. In some instances in may be necessary to store the equipment for a period of time. If you must store the equipment it should be done in a dry area, out of the weather, protected from damage by other equipment in storage or transportation equipment, never stacked, and avoid frequent relocation.

If equipment is stored for longer than 30 days special precautions must be taken to avoid coil damage. All coils should be charged and sealed with a low pressure (1-25 psig) inert gas, such as nitrogen. This prevents contaminants from entering the coils; then when the seal is broken at installation, the rush of escaping gas verifies the coil is still leak free. If coils are not charged and sealed condensation mixes with air pollutants forming a weak acid and over time can cause pin hole leaks to develop in the coil tubes.

When equipment is installed after storage caution should be taken to inspect and replace, if required, rubber hoses and belts. All moving parts, such as blowers and motors, should be hand tested to ensure that they are free and clear prior to start-up. Finally, verify that all lubrication is fresh and full.

It is the responsibility of the installing contractor to return the start-up sheet and warranty registration card to Data Aire for proper activation of the unit warranty. Failure to do so may cause delays and in some cases void the warranty.
2.0 PIPING

2.1 Chilled Water Unit Piping
The required field installed water pipe sizes may or may not be the same as the connection sizes at the unit. This will depend on the length of pipe and the calculated pressure drop of peripheral components.

Shutoff valves should be installed within a few feet of the inlet and outlet connections of the unit to allow the unit to be isolated for service. A fill valve with a hose bib connection should also be used on the supply line or return line at the unit to allow the unit to be drained.

Water temperature and worst-case room temperature and humidity conditions should be used to determine whether external piping should be insulated. Typical water temperature is 45° F which is usually cold enough to cause pipes to sweat.

Field pipe connections are typically made at the bottom of the unit. Punching holes in the back panel and making a 90° turn out the back of the unit is also acceptable. In some cases provisions have been made to route the pipes out the right or left side or out the top of the unit. Openings should not be made in the hinged decorative doors as this could prevent the door from swinging open.

Standard chilled water units have a 3-way chilled water valve. An option for a 2-way valve is also available. In either case the water connections to the unit should be made so there is a counterflow between the water and air. Field water pipe connections are labelled but the counterflow should also be verified before making field connections.

One of the most common problems in a chilled water system is the presence of air in the chilled water loop. Air vents must be installed in various locations in the piping system to purge the air.

2.1.1 Connection sizes, Chilled Water units

<table>
<thead>
<tr>
<th>Evaporator Model</th>
<th>Water In and Out Connections, OD</th>
<th>Evaporator Model</th>
<th>Water In and Out Connections, OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFCx007</td>
<td>1 1/8"</td>
<td>GFCx053</td>
<td>1 5/8"</td>
</tr>
<tr>
<td>GFCx011</td>
<td>1 1/8"</td>
<td>GFCx063</td>
<td>2 1/8"</td>
</tr>
<tr>
<td>GFCx014</td>
<td>1 1/8"</td>
<td>GFCx077</td>
<td>2 1/8"</td>
</tr>
<tr>
<td>GFCx018</td>
<td>1 1/8"</td>
<td>GFCx091</td>
<td>2 1/8"</td>
</tr>
<tr>
<td>GFCx025</td>
<td>1 1/8"</td>
<td>GFCx106</td>
<td>2 1/8"</td>
</tr>
<tr>
<td>GFCx032</td>
<td>1 1/8"</td>
<td>GFCx141</td>
<td>2 5/8"</td>
</tr>
<tr>
<td>GFCx039</td>
<td>1 5/8"</td>
<td>GFCx158</td>
<td>2 5/8"</td>
</tr>
<tr>
<td>GFCx046</td>
<td>1 5/8"</td>
<td>GFCx176</td>
<td>2 5/8"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GFCx211</td>
<td>3 1/8"</td>
</tr>
</tbody>
</table>

X = D-Downflow, U-Upflow

2.2 Chilled Water Valve Ratings
All chilled water valves used on g-Force series models 025 to 176 kW use chilled water valves that are rated at 400 psi operating pressure. The chart on the next page gives the valve size and Cv rating on 3-way valves for all unit models. The same information plus maximum close off pressure for optional 2-way valves is also indicated.
2.2.1 3-Way Chilled Water Valves

<table>
<thead>
<tr>
<th>Unit Model</th>
<th>Valve Size</th>
<th>Valve CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFCx025</td>
<td>1"</td>
<td>10.0</td>
</tr>
<tr>
<td>GFCx032</td>
<td>1"</td>
<td>10.0</td>
</tr>
<tr>
<td>GFCx039</td>
<td>1-1/4"</td>
<td>10.0</td>
</tr>
<tr>
<td>GFCx046</td>
<td>1-1/2"</td>
<td>19.0</td>
</tr>
<tr>
<td>GFCx053</td>
<td>1-1/2"</td>
<td>19.0</td>
</tr>
<tr>
<td>GFCx063</td>
<td>2"</td>
<td>46.0</td>
</tr>
<tr>
<td>GFCx077</td>
<td>2"</td>
<td>46.0</td>
</tr>
<tr>
<td>GFCx091</td>
<td>2"</td>
<td>46.0</td>
</tr>
<tr>
<td>GFCx106</td>
<td>2"</td>
<td>46.0</td>
</tr>
<tr>
<td>GFCx141</td>
<td>2"</td>
<td>46.0</td>
</tr>
<tr>
<td>GFCx158</td>
<td>2"</td>
<td>46.0</td>
</tr>
<tr>
<td>GFCx176</td>
<td>2"</td>
<td>46.0</td>
</tr>
<tr>
<td>GFCx211</td>
<td>2"</td>
<td>83.0</td>
</tr>
</tbody>
</table>

2.2.2 2-Way Chilled Water Valves

<table>
<thead>
<tr>
<th>Unit Model</th>
<th>Valve Size</th>
<th>Valve CV</th>
<th>Close-off Pressure, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFCx025</td>
<td>1"</td>
<td>10.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx032</td>
<td>1"</td>
<td>10.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx039</td>
<td>1 1/4"</td>
<td>10.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx046</td>
<td>1 1/2"</td>
<td>19.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx053</td>
<td>1 1/2"</td>
<td>19.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx063</td>
<td>2"</td>
<td>46.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx077</td>
<td>2"</td>
<td>46.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx091</td>
<td>2"</td>
<td>46.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx106</td>
<td>2"</td>
<td>46.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx141</td>
<td>2"</td>
<td>46.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx158</td>
<td>2"</td>
<td>46.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx176</td>
<td>2"</td>
<td>46.0</td>
<td>200</td>
</tr>
<tr>
<td>GFCx211</td>
<td>2"</td>
<td>85.0</td>
<td>100</td>
</tr>
</tbody>
</table>

2.3 Condensate Drain Piping

Every indoor unit has a 3/4” copper stub provided for condensate removal. A union is recommended at the field connection which will permit easy disconnection from the unit for cleaning.

A trap should be built into the drain line to prevent air from backing up into the unit. Drain lines should be pitched downward not less than 1/4” for each ten feet of horizontal run. Do not reduce the size of the drain line.

Some applications have no convenient means of allowing a gravity drain. In this case, a condensate pump can be used. These come either factory mounted or shipped loose. Factory mounted condensate pumps do not require a separate power source.
Condensate pumps shipped loose (or field provided) typically require a dedicated 110 volt power source. Field pipe connections must be made to the pump discharge connection. A check valve must be installed to prevent short cycling. See also condensate pump electrical requirements in Section 3.9.

2.4 Humidifier Piping

2.4.1 Steam Generator Humidifier
The standard humidifier on Data Aire systems is a steam generator type with a disposable cylinder. The humidifier makeup water should be brought to the humidifier through the field connection opening using 1/4” copper tubing. A compression fitting is provided at the humidifier.

A shutoff valve should be provided outside the air conditioner to allow disconnection for service. An in-line water pressure regulator and strainer should be installed. Water pressure should be set between 20 and 50 PSI.

The humidifier has a drain at the bottom which is factory piped to the main condensate drain line. The dispersion tube also has a drain line. No additional field piping is required.

2.4.2 Dry Steam Humidifier
The optional dry steam type humidifier requires a strainer on the inlet steam line. An outlet connection with a field-provided steam trap is also required. Steam pressure is typically 10-15 psi.

2.5 Leak Testing

No installation is complete until the entire system has been thoroughly checked for leaks. This includes water lines, flare fittings, pressure controls, and Shrader fittings.

Check all humidifier water makeup lines, condensate lines, condensate pumps, chilled water lines.

Tightening of fittings and valves is the responsibility of the installing contractor.
3.0 ELECTRICAL CONNECTIONS

Before proceeding with the electrical connections, make certain that the volts, hertz, and phase correspond to that specified on the unit electrical nameplate. Use copper conductors only.

3.1 Electrical Service
Check to be sure the service provided by the utility is sufficient to handle the additional load imposed by this equipment.

3.2 Nameplate Ratings
Refer to the unit electrical nameplate for equipment electrical requirements. Minimum circuit ampacity, (MCA) also known as wire sizing amps, will dictate the minimum required wire gauge. Maximum Overcurrent Protection (MOP) device amps will dictate the maximum circuit breaker or fuse size.

3.3 Grounding
The unit cabinet must have an uninterrupted true earth ground. An electrical ground wire of adequate size must be connected to the ground lug provided inside the main electrical box.

3.4 Voltage Tolerance
The supply voltage to the unit must be within 10% of the voltage indicated on the unit electrical nameplate. Phase to phase imbalance must not exceed 3%. The local utility company should be contacted for correction of improper line voltage. Deviation from voltage ratings can cause premature failures and possibly void unit warranties.

Check the wiring connections in the unit control panel to ensure they are tight. Screw terminals may become loose in transit. Tightening of wiring connections is the responsibility of the installing contractor.

3.5 Remote Shutdown
Every Data Aire chilled water unit has remote shutdown contacts. These are intended for a field supplied dry contact or switch to be wired across two terminals. When the contact or switch opens, the control circuit power is interrupted and the unit shuts down, including the control panel. The control circuit is 24 VAC and the field provided contact or switch should have a minimum rating of 10 amps. The remote shutdown contacts are always terminals #1 and #2 on the terminal block designated TB3. The unit will ship with a factory wired metal jumper clip that connects terminal #1 to terminal #2. Remove this clip prior to installing the field wires.

3.6 Remote Alarm Contacts
The dap4, microprocessor control panel provides a remote alarm output contact that can be field accessed on terminals #11 and #13 of terminal block TB1. This is a Normally Open, Close on Alarm, dry contact, intended to be used in a control circuit not exceeding 2 amps at 250 VAC.

This programmable output contact will close on a failure and remain closed until the alarm is no longer present. There are three additional alarm output contacts on the dap4. The terminal designations for these alarm output contact pairs are #40 and #42; #43 and #45; and #48 and #50.
3.7 Remote Sensors
Remote sensors are optional. Although existing unit mounted sensors can be removed for remote mounting, the remote sensor option provides a more convenient means of field installation. This is because the sensors are already connected to a predetermined length of cable and come mounted in a remote sensor enclosure. The temperature and humidity sensors require a total of five wires, these should be a twisted, shielded cable.

3.8 Condensate Pumps
Condensate pumps which ship loose normally require a separate source of 110 volt power. Always check the pump power requirements before connecting power. Condensate pumps are available in other voltages.

Condensate pumps may also come unit mounted and powered. While no outside power source is required, field piping is still a requirement.

Condensate pumps are wired to display a “High Condensate Water Level” alarm. The wiring for this must be done in the field on pumps that ship loose. Factory mounted pumps come pre-wired.

3.9 Condensate Probe
A condensate probe for sensing underfloor water is included with this unit. This comes in a plastic bag, with about 15 feet of coiled-up wire. The probe is a flat plate that is typically placed below the unit in a location where water is likely to accumulate.

Place the probe flat on the floor on top of a thin layer of non-conductive silicone. Secure the attached wires where necessary. A longer length of wire may be used if required.

Note: Failure to uncoil the length of wire attached to the condensate probe can result in a nuisance water-detected alarm. If the probe is not going to be used it should be disconnected.

3.10 Water Sensing Cable
Another option for water sensing is the Water Detection Cable. This is a long cable that can sense moisture anywhere along its length. It is typically placed below the unit in a rectangular pattern that matches the perimeter of the unit.
4.0 CONTROLS

4.1 dap4 Microprocessor Control Panel
The standard controls on all Data Aire Series equipment is the dap4 microprocessor control panel. This state-of-the-art control panel has a separate manual that goes into extensive detail regarding functions, features, programming, and troubleshooting.

The dap4 microprocessor control panel has an entire manual dedicated to its use and operation. This manual must be referenced to complete a thorough unit installation. Start-up is not complete until the dap4 control panel settings are established.

4.2 Wiring Diagrams
Every Data Aire unit comes with a wiring diagram. These diagrams are 'ladder'-type schematics intended for service personnel. The intent is to allow the technician to understand the wiring details associated with the electrical components and how they interface with the dap4 control panel as well as peripheral equipment.

Data Aire’s chilled water unit wiring diagrams will have a drawing number which starts out with the three letter designation, “GFC”. An example of a typical diagram, GFC-S-903, is shown on page 18.

5.0 ELECTRONICALLY COMMUTATED MOTORS (EC MOTORS)

Electronically Commutated (EC) motors with “Plug fan” are standard on all g-Force units.

Note: The plug fan modules are powered by high voltage input line power (i.e. 208-230V/3PH/60HZ or 460V/3PH/60HZ) and speed is set from 10V DC control signal from the unit’s microprocessor controller - dap4.

Fan speed is factory set based on order.

Fan speed can be changed in 1% increments through the unit’s microprocessor control (dap4). See the dap4 operation manual (Menu Group J-Factory Settings) for details and recommended settings.

5.1 START-UP WITH EC MOTORS/PLUG FANS
Using the dap4 manual switch operation will not bring the fans to full speed. Enabling the BLOWER manual mode switch inside on manual override module engages the contactors powering the high voltage to the plug fans but sets the control signal to 0V. Turning on fan speed switch will send signal to the EC fans and should rotate.

Enabling any other manual mode switch will likewise disable all control outputs from the dap4 panel resulting in full manual mode operation and setting the plug fans to 0V.
5.2 TESTING
To test the plug fan modules in manual mode, turn on the blower and fan speed switch on the manual override module. This will enable the fan control signal at maximum speed. The fans will spin at near full speed if there contactors are enabled.

5.3 PROTECTIVE FEATURES
EC motors have built-in protective features that include the following:
- Over-Temperature protection of the (motor) electronics,
- Over-Temperature protection of the motor,
- Locked rotor protection,
- Phase failure detection,
- Under-voltage detection,
- Short-circuit protection.

If any of the conditions exist, the motor stops electronically and an alarm (NO AIRFLOW) will be energized and displayed on the unit’s microprocessor screen. The motor will start up automatically. To reset, the power supply has to be switched OFF for a minimum of twenty seconds.

If for any reason the rotor is blocked, the motor will electronically switch off. Before looking for any blockage make certain to power down the unit. Once the blockage is cleared the motor will automatically restart when powered on.

Electric motors have under voltage protection. If the power supply voltage falls below ~150 VAC/3Φ (for 230 volt motors) or ~290 VAC/3Φ (for 460 volt motors) for a minimum of five (5) seconds, the motor will automatically switch off and an alarm (NO AIRFLOW) will be energized and displayed. If the power supply voltage returns to the correct values, the motor will automatically restart.

Note: The unit’s control panel (dap4) has a time delay before the NO AIRFLOW alarm is energized. It is adjustable from 5 to 180 seconds (in 5 second increments). On sites where a voltage problem is known to exist, the delay can be adjusted to eliminate “nuisance” alarms until the problem is corrected. See Menu K-ALARM and LIMITS (NO AIRFLOW ALARM TIME DELAY) in the dap4 operation manual.

5.4 MAINTENANCE
Maintenance is not required on EC motor/plug fan modules. The motors are sealed, have maintenance free ball bearings and permanent lubrication. The only acceptable service is replacement.
6.0 REGULAR MAINTENANCE ITEMS

6.1 Filters
Filters should be checked on a regular basis and changed when they become dirty. This will ensure efficient operation of the unit. Although the unit has a dirty filter alarm, this should not be relied on as the only determinant for replacing filters. A maladjusted filter differential pressure switch may not give a proper indication of a clogged filter.

To check the filter differential pressure switch for proper adjustment, temporarily cover about 75% of the return air opening using heavy cardboard or similar material. The alarm should energize when 75% of the air is blocked, simulating dirty filters. If the alarm energizes prematurely or does not energize at all, the pressure switch should be adjusted. Doors must remain closed when determining if an adjustment is necessary.

Spare filters should be kept in stock as these tend to be a frequently replaced maintenance item. Filters may require changing as often as monthly. Note also that construction dust on new installations will quickly clog new filters.

![Filters that require changing can restrict airflow and create problems such as poor air distribution.]

6.2 Humidifier Canisters
Steam generator type humidifier is standard on g-Force Series of equipment. There is no maintenance required other than to replace the canister as required. This frequency will depend on usage and water type. A set of manufacturer’s instructions for the humidifier is sent as part of the paperwork placed inside the unit when it ships.

6.3 Fuses
Fuses may occasionally require changing especially with installations where the voltage is not consistent. Drops in voltage can create brief periods of high amp draw, causing fuses to blow. Always replace fuses with those of the equivalent rating with regard to: 1) amperage, 2) voltage, and 3) speed. For instance motors are inductive loads which require time delay fuses. Electric reheat and humidifiers are resistive loads requiring fast acting fuses.

6.4 Heating Elements
Heating elements do not normally require maintenance. However sometimes they may accumulate a film of dust or dirt when unused for extended periods of time. When energized, the burning debris can create smoke or unpleasant odor. To help avoid this, periodic cleaning is recommended.
7.0 Warranty Policy

Seller warrants its equipment to Buyer to be free from defects in material and workmanship for a period of eighteen (18) months from date of shipment, as long as equipment is utilized under normal conditions and service and is properly installed; however, the warranty shall not be applicable to any of the following items: refrigerant, belts, filters, humidifier, heaters not regularly cleaned, light bulbs, and any other items either consumed or worn out by normal wear and tear, or by conditions beyond Seller’s control, including (without limitation as to generally) polluted or contaminated air or water.

The Seller’s obligation under this warranty is limited solely to the repair or replacement, at Seller’s options, of any part or parts thereof which shall, within eighteen (18) months from date of shipment of the equipment to the original purchaser be returned to the factory, transportation charges prepaid, which upon examination shall disclose to the Seller’s satisfaction to have been defective under normal use and service. This agreement to repair or replace defective parts is expressly in lieu of all other warranties, expressed or implied and all other obligations or liabilities on the part of Seller and Seller neither assumes nor authorizes any other person to assume for it any liability or obligation in connection with the sales or service of its equipment, except said repair or replacement of defective parts set forth above.

This warranty does not include any labor charges for work done outside of the factory for replacement of parts, adjustments, repairs, or any other work. Seller’s liability does not include any resulting damage to persons, property, equipment, goods or merchandise arising out of any defect in or failure of any equipment of its manufacture and Buyer hereby waives any claim against Seller arising out of such claim. This warranty shall not cover the repair or replacement of any equipment which has been repaired or altered outside of the factory in any way or which has been subject to negligence, misuse, or abuse, or to pressures in excess of stated limits.

This warranty applies only to the original purchaser of the equipment and does not extend, expressly or by implication, to the third parties or others without the specific written approval and acknowledgment of Seller. Buyer’s exclusive remedy and Seller’s maximum liability for any and all loss, injury, damage, costs, or expense arising from any defect covered by this warranty shall be limited to the repair or replacement, but not the installation of any defective material, F.O.B., Seller’s plant; provided however, that Seller shall not be required to replace any part or component (a) which can be repaired, or (b) unless Buyer has given Seller immediate written notice that replacement or repair. In addition, Seller shall not be liable for any cost or expense of replacement or repair contracted for by Buyer with any third person, unless, and then only to the extent that Seller authorizes in writing, such costs or expense.

Seller shall not be liable for any direct, indirect incidental, consequential, or other form of loss, injury, damage, cost, or expense, whether caused by delay, failure, or performance, breach of warranty, or by any cause whatsoever.

Seller’s obligation under this warranty shall be void if Buyer fails: (a) without legal justification to pay Seller, when due, the full purchase price for the equipment sold hereunder; or (b) to have the equipment sold hereunder installed, maintained, and serviced by competent personnel and in accordance with Seller’s instructions.
8.0 Contact Data Aire

Address:
Data Aire Inc.
230 W. BlueRidge Avenue
Orange, CA 92865

Phone
714-921-6000
800-347-AIRE (2473) Toll Free

Fax:
714-921-6010 Main
714-921-6011 Engineering
714-921-6022 Part Sales

E-mail:
service@dataaire.com Service
engineering@dataaire.com Engineering
sales@dataaire.com Sales

Web site:
www.dataaire.com

Job information:

Model Number: G__ __ __ __ __ __ __ - __ __

Serial Number: __ __ __ __ - __ __ __ __ - __

Job number: ________________________________

Date installed: ___ / ___ / 201___

Installing Contractor: ________________________________
Data Aire, Inc.

Monthly Maintenance Inspection Checklist

Model No. __________________ Serial No. __________________
Prepared by: _______________ Date: ___ / ___/ 201

Air Filters
___ Check for restricted air flow

Air Distribution Section
___ Check for restriction in grille(s)

Condensate Drain and Pump (if applicable)
___ Check for water leaks
___ Check for restricted air flow
___ Pump operation

Electrical Panel
___ Check contactor operation
___ dap4 control panel operations

Equipment Runtimes
Blower _________ hrs
Reheat No. 1 _________ hrs
Reheat No. 2 _________ hrs
Reheat No. 3 _________ hrs
Humidifier _________ hrs
Dehumidification _________ hrs
Chilled Water Cooling _________ hrs

___ Reset all to read zero runtimes

Temperature/Humidity set at: ___° ___% RH

Notes: __
__
__
__
__
__
__
__
__
Data Aire, Inc.

Quarterly Maintenance Inspection Checklist

Model No. _______________________ **Serial No.** ___________________________
Prepared by: _____________________ **Date:** ___ / ___/ 200__

Air Filters
- [] Check for restricted air flow
- [] Check filter differential switch
- [] Wipe filter rack section clean

Air Distribution Section
- [] Check for restriction in grille(s)

Condensate Drain and Pump (if applicable)
- [] Check for water leaks and restricted flow
- [] Pump operation

Steam Generating Humidifier
- [] Check canister for deposits and water level
- [] Check condition of steam hose and clamps
- [] Check drain and fill valve for deposits

Infrared Humidifier (if applicable)
- [] Check humidifier lamps
- [] Check pan for mineral deposits
- [] Check high limit switch operation
- [] Check drain timer operation
- [] Check drain valve operation

Reheat
- [] Check reheat element(s) for dust
- [] Check high limit switch operation

Electrical Panel
- [] Check fuses
- [] Check contactor operation
- [] Check all electrical connections
- [] Check operation sequence

dap4 control panel operations
- [] Check calibration of temperature sensor (7-1*)
- [] Check calibration of humidity sensor (7-2*)
- [] Check calibration of discharge air sensor (7-3*)
- [] Check calibration of chilled water temperature sensor (7-4*)

* dap4 group 7 submenus. Options 7-3 and 7-4 are optional and may not be installed in all units

Equipment Runtimes

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blower</td>
<td></td>
</tr>
<tr>
<td>Reheat No. 1</td>
<td></td>
</tr>
<tr>
<td>Reheat No. 2</td>
<td></td>
</tr>
<tr>
<td>Reheat No. 3</td>
<td></td>
</tr>
<tr>
<td>Humidifier</td>
<td></td>
</tr>
<tr>
<td>Dehumidification</td>
<td></td>
</tr>
<tr>
<td>Chilled Water Cooling</td>
<td></td>
</tr>
</tbody>
</table>

- [] Reset all to read zero runtimes

Temperature/Humidity set at: _____° _____% RH

Notes:

__

__

__

__

__

__

__

__

__
INDEX

- A -
Air Filters ... 14

- C -
Cable, Water Sensing 12
Condensate Cable 12
Condensate Probe 12
Condensate Pumps 12
Contact Data Aire 17
Controls .. 13
dap4 Control Panel 13
Wiring Diagrams 13, 18

- D -
dap4 Control Panel 13
Differential Pressure Switch 15

- E -
Electrical .. 11
Electronically Commutated Motors 13

- F -
Field Piping ... 8
 Condensate ... 9
 Dry Steam Humidifier 10
 Steam Generator Humidifier 10
Field Wiring ... 11
 Remote Alarm Contacts 11
 Remote Sensors 12
 Remote Shutdown 12
Filter ... 15
 Air .. 15
Floorstands ... 6
Fuses .. 15

- G -
Grounding ... 11

- H -
Heat ... 15
 Electric ... 15
 Reheat Elements 15
Humidifier ... 10, 15
 Canister ... 15
 Dry Steam Humidifier 10
 Steam Generator Humidifier 10, 15

- I -
Inspection ... 5
Installation ... 5-7

- J -
Jackstands ... 6

- L -
Leak Testing .. 10
Locating ... 6

- M -
Maintenance .. 15
 Filters ... 15
 Fuses ... 15
 Heating Elements 15
 Humidifier Canisters 15

- P -
Paperwork ... 7
Piping See Field Piping
Plug Fans .. 13
Probe, Condensate 12

- R -
Reheat ... 15
 Elements .. 15
 Electric .. 15
Remote ... 15
 Alarm Contacts 11
 Sensors .. 11
 Remote Shutdown 11
Rigging ... 5

- V -
Valves ... 10
 2-Way Chilled Water Valve 9
 3-Way Chilled Water Valve 9
 Humidifier Makeup Water 10
Voltage .. 11

- W -
Warranty ... 16
Water Sensing Cable 12
Water Sensing Probe 12
Wiring ... 11
Notes